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Abstract: Bats are essential for ecosystem functioning, acting as pollinators, seed dispersers,
and natural pest controllers. Their ecological services are critical for agriculture, reducing crop
losses and minimising the need for chemical pesticides, thereby supporting food security.
However, bat populations face multiple, often synergistic threats, including habitat loss,
climate change, diseases such as white-nose syndrome, wind energy developments, and
pesticide exposure. These pressures not only threaten bat survival but also disrupt ecosystem
processes and agricultural productivity. Despite their importance, bats often receive limited
conservation attention due to misconceptions and their elusive behaviour. Recent initiatives
emphasize habitat restoration, disease management, public education, and the use of advanced
monitoring and genetic techniques to inform targeted interventions. Effective conservation
requires integrated strategies combining policy, research, and community engagement.
Protecting bats is crucial to maintain biodiversity, ensure sustainable agriculture, and safeguard
food systems, highlighting the need for immediate, coordinated conservation action.
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1. Introduction

Bats are placental mammals belonging to the order Chiroptera, which is divided
into two suborders: Yinpterochiroptera and Yangochiroptera (Figure 1) [1]. According
to their evolutionary history, their origins can be traced to the Palacocene—Eocene
boundary, approximately 56-54 million years ago, a period marked by significant
climatic and ecological shifts that may have facilitated the diversification of early
chiropterans [2]. Their phylogenetic analysis supports the monophyly of bats and
suggests that the earliest bats possessed morphological adaptations for flight and
echolocation, underscoring a rapid evolutionary transition from terrestrial to volant
lifestyles. A phylogenetic relationship between bats and other placental mammals was
identified, placing chiropterans within Laurasiatheria together with carnivores,
ungulates, and cetaceans [2]. They are an exceptionally diverse group with the unique
ability to fly, often travelling great distances during seasonal migrations [3]. Most bats
are nocturnal and tend to form large colonies when roosting in caves, trees, or human-
made structures [4]. Some species hibernate during colder months [5]. This order
represents nearly 20% of all known mammal species globally at the moment, with
more than 1,400 species according to the IUCN database. It is important to mention
that these numbers are dynamic and subject to taxonomic updates [6]. Bats inhabit
almost every continent, except for extremely frigid areas like Antarctica and the Arctic
[3]. Bats exhibit remarkable trophic plasticity, consuming a wide range of prey,
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including insects, fruits, nectar, and even small vertebrates, allowing them to occupy
distinct ecological niches. This dietary adaptability has been a key driver of their
adaptive radiation, facilitating the colonization of diverse habitats and promoting
speciation across varied ecological contexts. For instance, frugivorous and
nectarivorous bats have evolved specialized dentition and sensory adaptations to
exploit floral and fruit resources, while insectivorous species have refined
echolocation systems to target specific prey types, illustrating how trophic
specialisation has reinforced niche differentiation and contributed to the extensive
biodiversity observed within Chiroptera [7].

Bats are crucial in both natural ecosystems and human economies [3]. As
pollinators, bats contribute to provisioning services by facilitating the reproduction of
economically valuable plants, including those that produce fruits, seeds, and other
resources vital to both natural ecosystems and agricultural systems. In their role as
insect predators, they provide essential regulating services by controlling insect
populations, thereby mitigating crop pests and reducing the spread of vector-borne
diseases. Additionally, their seed dispersal activities support ecosystem services by
aiding in forest regeneration and maintaining plant diversity, which in turn stabilises
habitats and promotes overall ecological resilience. Their droppings (guano) serve as
a valuable natural fertiliser [8]. Additionally, bats support rural economies through
ecotourism and, in some regions, serve as a food source [9,10].

Figure 1. Illustration and Yangochiroptera (A) and Yinpterochiroptera (B) (Author
lustration: Andreia Garcés).

As of the most recent [UCN assessment, approximately 16.5% of the over 1,400
bat species are classified as threatened, primarily under criteria such as A2c
(population decline driven by habitat destruction) and Blab (restricted range, habitat
fragmentation, and decline in habitat quality) [1]. However, this percentage varies
considerably across biomes. In tropical forests, where over 60% of bat species are
found, habitat loss due to deforestation, agricultural expansion, and mining has led to
elevated threat levels, with up to 25% of species categorised as vulnerable, endangered,
or critically endangered. In arid and semi-arid regions, water scarcity and
desertification exacerbate resource limitations, impacting foraging habitats and roost
availability, contributing to higher extinction risks for specialised insectivorous and



Agriculture and Biology 2026, 1(2), 1-36.

nectarivorous species. Coastal and island ecosystems also present unique threats, with
endemic bat populations facing severe pressures from invasive species, habitat
fragmentation, and extreme weather events intensified by climate change. By
delineating these biome-specific threat patterns, targeted conservation measures can
be more effectively tailored to address localised risks, enhancing the resilience of bat
populations globally [2]. Some examples of endangered species include Chalinolobus
dwyeri, Pipistrellus maderensis, Plecotus sardus, and Coleura seychellensis, among
others, according to The IUCN Red List of Threatened Species [3].

Bats face a variety of threats leading to their decline [4]. Habitat destruction has
resulted in the loss of critical roosting sites such as caves, old-growth forests, and
hollow trees, disproportionately affecting bat species with high roost fidelity.
According to the Refuge Theory, species that rely on specific, limited habitats for
roosting are particularly vulnerable to habitat fragmentation, as the loss of refugia can
lead to population declines and increased extinction risk [5]. Additionally, the Habitat
Specialist Sensitivity Hypothesis posits that species with specialised roosting
requirements exhibit lower ecological flexibility, making them more susceptible to
habitat alterations [6]. For instance, cave-dependent species that exhibit strong roost
fidelity may face heightened extinction risks as cave networks are disrupted by mining
or tourism, while old-growth forest specialists may struggle to adapt to fragmented
landscapes with fewer suitable roosting sites [7]. The increase in extreme weather
events such as droughts, hurricanes, and heat waves has impacted bat populations by
affecting food availability, migration patterns, and hibernation cycles [8]. Some bat
species are hunted for bushmeat and traditional medicine. For example, large fruit bats
(Pteropus mariannus, P. vampyrus, and P. alecto) are particularly vulnerable to this
activity [9]. Human eradication of bats is often driven by fear, superstition, or concerns
about infectious diseases, underscoring how public perception and misinformation can
exacerbate biodiversity loss. Misconceptions about bats as disease vectors or
harbingers of misfortune can lead to harmful practices, such as roost destruction or
indiscriminate culling, which not only threaten bat populations but also disrupt
essential ecological functions like pollination and pest control. This emphasises the
critical role of science communication in reframing public narratives, promoting
evidence-based understanding of bats’ ecological importance, and fostering
coexistence strategies that mitigate conflict while safeguarding biodiversity [10]. The
rise of new infectious diseases, such as white-nose syndrome (a fungal disease caused
by Pseudogymnoascus destructans), has been responsible for a 94% decline in
populations of little brown myotis (Myotis lucifugus) [11] and northern long-eared bats
(Myotis septentrionalis) in eastern Canada and the USA since its identification in 2006
[12]. Collisions with wind turbines are estimated to kill thousands of bats annually,
illustrating a critical ecological trade-off between renewable energy development and
biodiversity conservation [13]. While wind energy offers substantial benefits in
mitigating climate change, its rapid expansion has led to unintended consequences for
bat populations, particularly migratory and echolocating species drawn to turbine
structures [14]. Domestic cats (Felis catus) and vehicle collisions have also been
identified as sources of bat mortality [15,16]. Artificial lighting—whether in streets,
at turbine bases, or around human dwellings—alters bat behavior: lights can attract
insects (thus drawing foragers), but also increase predation risk and force bats to shift
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flight paths into cluttered cover for protection [17]. Natural predators (e.g., owls,
weasels) also contribute to bat mortality. Even though predation is a natural ecological
interaction, human activities often exacerbate it: artificial roosts may be poorly
designed, poorly located, insufficiently camouflaged, or lacking escape routes, making
them easier targets; lighting around roosts can illuminate entering/exiting bats,
facilitating predator attacks. A recent study in southern Spain documented continuous
low-intensity predation by tawny owls (Strix aluco) on Nyctalus lasiopterus in a
colony using natural and artificial roosts, showing even modest predation can threaten
small or isolated populations—especially when roost switching is not feasible due to
scarcity of suitable sites [18].

Understanding the various causes of bat mortality is essential, as this knowledge
can help shape conservation efforts, monitoring programs, and mitigation strategies to
protect bat populations [15,16]. This work aims to review the existing literature to
identify trends in the causes of mortality in Chiroptera worldwide, particularly
connected to anthropogenic factors.

2. Materials and Methods

In this narrative review, the authors present a review of the mortality patterns of
free-ranging bats associated with anthropogenic factors [19]. The initial search on the
Web included terms used in combination or isolation, such as "bat," "Chiroptera,"
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"Yinpterochiroptera," "Yangochiroptera," "causes of death," "mortality," and/or "post-
mortem," yielding articles from digital databases (Web of Science, Scopus, PubMed,
SciELO, Research Gate, Google Scholar). Figure 2 shows the flow diagram of data
collection for the systematic review according to the guidelines PRISMA (Preferred
Reporting Items for Systematic reviews and Meta-Analyses), 2000 [19]. The
inclusion/exclusion steps were independently reviewed by the two authors of the paper.
The final selection comprised 240 articles deemed suitable for inclusion in this review
from 1890 to 2024. Only peer-reviewed articles were included. The criteria of
inclusion were: (i) relevance to the impacts of anthropogenic factors (e.g., roads, wind
turbines, artificial lighting, predation) on bat ecology and conservation; (ii) publication
in peer-reviewed journals to ensure scientific rigor; (iii) clarity of methodology and
data, excluding anecdotal or non-systematic reports; and (iv) geographic and
taxonomic diversity, to ensure representation of different bat species, habitats, and
regions. Articles not meeting these criteria, such as grey literature, conference
abstracts, were excluded. Only papers in which the species, country, year, and cause
of death were available were included. Another selection criterion was language, with
only manuscripts in English, Portuguese, Spanish, and French being considered.
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Figure 2. Flow diagram of data collection for the review.

Regarding the categories of mortality, the data available in the papers were highly
diverse. To streamline analysis, the authors classified bat mortality factors into ten
distinct categories, a pragmatic approach that enhances clarity while facilitating
comparative analysis. This classification framework was developed through a
combination of thematic analysis and expert consensus, aligning with similar
taxonomic frameworks in ecological and forensic studies on wildlife mortality [20].
Validating this categorization against established frameworks not only bolsters
scientific rigour but also ensures consistency with previous research, enabling more
robust cross-study comparisons. The 10 categories as follows: vehicle collision, wind
farms, electrocution, shotgun (animals with ammunition found in the carcass),
anthropogenic causes (animals killed directly due to persecution or vandalism, or
indirectly due to habitat destruction), natural disasters (storms, hurricanes, floods,
among others), predation (animals killed by cats or dogs, natural predators were
excluded), bushmeat (animals hunted for consumption or sale in markets), infectious
diseases (caused by viruses, bacteria, fungi, parasites, or other pathogenic agents), and
poisoning (due to pesticides, rodenticides, or other toxic compounds). There were no
overlapping categories in the animals included in this study. Cases of predation by
invasive species were not included, since some species attack bats in their natural
habitat.
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3. Results

In this review, 240papers were included that examined the causes of mortality of
free-ranging Chiroptera from 1890 to 2024.

3.1. Taxonomy

The papers included in this review described 154 bat species, the most common
being Pteropus poliocephalus (n = 24), Eptesicus fuscus (n = 26), Myotis lucifugus (n
=26), and Tadarida brasiliensis (n =27). These species were divided into 13 Families,
Vespertilionidae (n = 14) and Pteropodidae (n = 79) being the predominant ones
(Figure 3).
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Figure 3. Prevalence of Chiroptera Family included in this review (Author: Andreia Garceés).
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3.2. Geographical Distribution of Mortality Events

The geographical spread of the events demonstrates that bat populations are under
pressure worldwide. North America (n = 112) and Australia (n = 37) were the regions
with the most reported mortality events. Mortality events have been reported on every
continent except Antarctica and the Arctic. Figure 4 illustrates the worldwide
distribution of mortality studies focused on various bat species.
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Figure 4. Distribution of bat mortality events worldwide (Author: Andreia Garcés).

3.3. Mortality Causes

The major causes of mortality described in the various papers were as follows:
predation (n = 59), anthropogenic causes (n = 56), natural disasters (n = 53), poisoning
(n = 39), bushmeat hunting (n = 28), shotgun injuries (n = 14), wind farms (n = 12),
infectious disease (n =9)), roadkill (n = 5), and electrocution (n = 1). Table 1 presents
the different causes of death associated with the countries where these studies were
conducted.

In the USA, the primary causes of mortality were natural disasters (n = 20) and
predation (n = 20) [19-21]. In Australia, natural disasters were the main cause of
mortality (n = 20) [21,22]. Among the Vespertilionidae family, the leading cause of
death was predation (n = 15), while in the Pteropodidae family, it was natural disaster
(n=15) (Figures 5,6).

Mortality associated with poisoning sometimes occurs accidentally (when trying
to eliminate other pests) or when attempting to eliminate bats from houses or
agricultural fields. The compounds associated with poisoning include lead [23],
lindane [24], chemical treatment of timbers for wood-boring insects and decay [25],
dieldrin [26], pentachlorophenol [27], diphacinone [28], DDD, endrin [29], Carbamate
[30], blue-green algae neurotoxin [31], DDT, chlordan [32], and strychnine [33,34]
(see Table 1 and Appendix A-Table Al).
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Mortalities associated with natural disasters were linked to high ambient
temperatures, leading to hyperthermia, stress, and starvation due to food shortages
[35,36]. Episodes of very low temperatures were also associated with bat mortality in
some regions [37]. Other phenomena such as severe droughts, floods, typhoons,
cyclones, and volcanoes have also been identified as contributing factors [38—40] (see
Table 1 and Appendix A-Table Al).

Table 1. Distribution of the causes of mortality among bats across the different countries.

Mortality Causes

s 5 B 5 :
Country g = & £ = 5 2 §° g g 5 g
2 5% = s = = 2 3 = & g
z =2 k5 2 g g £& Z 2 £
z 8 & = = & &= @ 2 2
= 2 =
Australia 2 20 1 2 0 0 5 0 2 1
UK 6 0 4 0 0 0 1 0 1 0
Netherlands 5 0 0 0 0 0 0 0 0 0
USA 11 20 20 2 8 0 15 0 5 0
France 1 0 0 1 0 0 1 0 0 0
Spain 0 0 2 0 3 0 0 0 0 0
Portugal 0 0 1 0 1 0 0 0 0 0
Brazil 0 0 0 0 1 3 1 0 0 0
Canada 1 0 0 1 0 0 4 0 0 0
Mexico 1 0 0 0 0 0 1 0 0 0
Madagascar 0 0 0 0 0 0 5 4 0 0
Democratic
Republic of 0 0 0 0 0 0 3 0 1 0
Congo
Trinidad 1 0 0 2 0 0 2 0 0 0
Venezuela 1 0 1 0 0 0 0 0 0 0
Italy 0 0 2 0 0 0 0 0 0 0
New Zealand 0 1 1 0 0 0 0 0 0 0
Germany 1 0 0 0 0 0 0 0 0 0
Poland 0 0 0 0 0 1 0 0 0 0
South Africa 0 1 1 0 0 0 0 0 0 0
Thailand 0 0 0 0 0 0 1 1 0 0
Malaysia 0 0 0 0 0 0 0 3 0 0
India 0 0 0 0 0 0 1 1 0 0
Japan 0 0 1 0 0 0 1 0 0 0
Nigeria 0 0 0 0 0 0 0 2 0 0
Uganda 0 0 0 0 0 0 1 0 0 0
Cuba 0 0 2 0 0 0 1 0 0 0
Jamaica 0 0 1 0 0 0 0 0 0 0
Sri Lanka 0 0 0 0 0 0 0 0 0 1
Solomon Islands 0 1 0 0 0 0 0 1 0 0
Puerto Rico 0 2 3 0 0 0 0 0 0 0
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Figure 5. Distribution of the causes of mortality among bats across the different Families.
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Figure 6. Distribution of the causes of mortality among bats across the years.

Predation is only associated with attacks by domestic animals, such as cats
[41,42]. Regarding anthropogenic causes, some events were due to accidents such as
entanglement in netting or cave obstruction [22,43]. Other events were associated with
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vandalism or direct persecution of bats as pests [4]. Infectious diseases were also
linked to tick paralysis neurotoxicity [44], rabies [45], EBLV-1 [46], and
Pseudogymnoascus destructans [34] (see Appendix A -Table Al).

3.4. Post-mortem Findings

In four other papers, which were not included in the previous analysis, focused
on the post-mortem examination of animals admitted to centres and laboratories.

Colombino et al. (2013) necropsied a total of 71 bats from the Vespertilionidae
and Molossidae families. Among them, 56.3% showed traumatic injuries, either from
unknown trauma (35 bats) or predation (5 bats). The most common lesions were
damage to the patagium and skin (32.4%), fractures (21.1%), diaphragmatic hernias
(1.4%), and liver petechiac with abdominal haemorrhages (1.4%) [47]. Notably,
fractures included radio-ulnar (9.8%), humeral (4.2%), phalangeal (4.2%), and carpal
fractures (2.8%) (Figure 6). Thirteen bats (18.3%) died due to severe emaciation, all
of which were rescued during the summer. The cause of death could not be determined
for 18 bats (25.4%). Additionally, gastric distension was found in 10 bats (14.1%),
mainly observed in summer (50%) and autumn (40%). Other findings included
pneumonia (4.2%), free nematodes (Litomosoides spp.) in the thorax and/or abdomen
(5.6%), and spleen discoloration (1.4%) [47].

Figure 7. Examples of fractures and wing membrane wounds in Pipistrellus
pipistrellus (Author: Andreia Garcés).

Garcés et al. (2017) [48] examined a total of 20 European bats from the family
Vespertilionidae. External examinations revealed signs of dehydration and emaciation
in all bats, with six showing severe emaciation and enteritis. Two bats had small
patches of alopecia on their neck and abdomen, and two others were infested with ticks
on their neck, head, and thorax [48]. Ten bats had skeletal or skin lesions resulting
from mild to severe trauma, including wing membrane wounds (n = 5), ruptures in the
wing membranes (n = 10), exposed humeral fractures (n = 2), forelimb phalangeal
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fractures (n = 2), and forearm fractures (n = 3), often accompanied by subcutaneous
hematomas (Figure 7). One bat was suspected of suffering from a cerebral concussion
after colliding with a pool wall [48]. Internal examination revealed hemorrhagic
pectoral muscles in four bats and pale muscles in two others. Nine bats had congested
internal organs, and three had sanguineous fluid in their thoracic and abdominal
cavities. In two cases, the liver had a yellowish colour, and one bat had thickened
intestines with a whitish colour [48]. Two pregnant females were found, each carrying
an advanced fetus. Seven bats had no internal lesions identified due to mummification
(n=2) or autolysis (n = 5) [48].

Beattie et al. (2022) [49] performed postmortem examination in 275 bat cases,
the primary causes of death were cat predation (24.0%, n = 66), blunt force trauma
(23.0%, n = 64), and emaciation (21.1%, n = 58). Other causes included rabies (7.6%,
n = 21), pneumonia (4.0%, n = 11), dehydration (3.3%, n = 9), and dermatitis (2.9%,
n = 8). Trauma was often anthropogenic, including collisions with vehicles, walls, and
windows, being crushed by garage doors, and direct harm from humans or domestic
dogs [49]. Additionally, 5.1% of bats died from other causes (n = 14), such as
septicemia (n = 4), drowning (n = 2), necrohemorrhagic colitis (n = 2), fetal
mummification (n = 1), placentitis (n = 1), pulmonary edema (n = 1), suffocation (n =
1), systemic thrombosis (n = 1), and transmural intestinal hemorrhage (n = 1). Fungal
growth was observed in 20.7% of bats (n = 57), with 63.2% of these showing
associated inflammation (n = 36) [49].

- S d

Figure 8. Examples of hemorrhage and hematomas in Pipistrellus pipistrellus (Author:
Andreia GarcéEs).

Miihldorfer et al. (2011) [50], between 2002 and 2009, in Germany, collected 486
deceased bats from 19 species of the family Vespertilionidae. About 39% of the bats
showed varying degrees of traumatic injuries. These included lacerations to the wing
membranes (n = 78), fractures in the humerus (n = 31), forearm (n = 50), phalanges (n
= 26), femur (n = 4), and ribs (n = 5), as well as skull and mandible fractures (n = 4),
loss of extremities (n = 10), subcutaneous hematomas (n = 31), and skin abrasions (n
= 21) [50]. Additionally, abdominal injuries such as hernia (14), hemothorax (8), and
hemoperitoneum caused by spleen rupture (n = 2) were observed in 24 bats. Some bats
also showed joint dislocations (elbow, carpal, or knee) and hind leg paralysis (n = 3).
In addition to these physical injuries, 16% of the bats had enlarged spleens and/or

11
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livers. Furthermore, 10 bats exhibited signs of hemorrhagic (n = 6) or catarrhal (n = 4)
enteritis [50].

Many of the papers relating to mortality due to collision with wind turbines also
describe the post-mortem findings. Collisions with turbine blades can result in
fractures to the bat’s wings, ribs, or legs and hernias (inguinal and diaphragmatic).
Wing fractures are particularly common due to the fragility of bat wings [14]. Joints
may become dislocated, especially in the wings or limbs, from the impact [51].
Subcutaneous bruising is frequently found, indicating blunt trauma and contusions.
Internal hemorrhages can also be present, particularly in the thoracic or abdominal
cavities [52]. Severe cuts and tears to the wings, head, or body due to direct contact
with the turbine blades or other parts of the turbine structure [53,54]. Barotrauma can
also occur when bats fly too close to the spinning blades, experiencing a sharp pressure
drop that leads to internal injuries. Key findings include: lung damage (pulmonary
edema, alveolar rupture), gas embolism, and vessel rupture [55].

’

| —
—_—
—
—
—_—
—_—
[——
—_—
—_—
——
—_—
—_—
e

Figure 8. Examples of cranial traumatism in a Tadarida teniotis (Author: Andreia
Garcés).

4. Discussion

Bats are ecologically significant creatures that contribute to pest control,
pollination, and seed dispersal, yet their populations are experiencing alarming
declines across the globe [56]. The causes of bat mortality are complex and
multifactorial, with both natural and anthropogenic factors playing crucial roles [57].
Understanding these causes is critical for informing conservation efforts aimed at
preserving bat populations and, consequently, the ecosystems they support [24,58].

It is important to note that the information available in this review is not
completely correct. Data limitations in bat mortality studies are often compounded by
significant underreporting and regional biases, which can skew the interpretation of
findings and hinder the formulation of effective conservation strategies. Many bat
mortality incidents, particularly those occurring in remote or inaccessible areas, go
undocumented, resulting in a substantial underestimation of true mortality rates.
Additionally, research efforts are frequently concentrated in regions with greater
funding or research infrastructure, leading to geographic biases that may overlook
critical mortality events in less-studied areas. Such disparities can obscure broader
ecological patterns and misrepresent species-level vulnerabilities. Addressing these
limitations requires expanding monitoring efforts to underrepresented regions and

12
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implementing standardised, systematic data collection protocols. Future research
should prioritize longitudinal studies to track mortality trends over time, integrate
community-based reporting systems to capture more localized data, and leverage
emerging technologies such as remote sensing and bioacoustics to detect mortality
events more comprehensively. Also important to refer to a language limitation with
papers in languages such as Russian or Chinese, not included. Unfortunately, it is
expected that every year, the number of bats that die is probably much higher than
what is reported here.

Bat species, such as Pteropus poliocephalus, Eptesicus fuscus, Myotis lucifugus,
and Tadarida brasiliensis, are particularly represented in mortality reports [22,32,59].
This could indicate that certain species are more vulnerable to the aforementioned
causes of death, likely due to their life history traits, migration patterns, or habitat
preferences [60,61]. Species of the Vespertilionidae (n = 147) were the most reported,
which was expected since they are the most common group of bats worldwide [60,61].
Bats are vital for ecosystem services, including pollination, seed dispersal, and insect
population control. For instance, the decline of Pferopus spp., key pollinators in
tropical ecosystems, can disrupt plant reproductive success, affecting entire plant
communities [56]. Similarly, reductions in insectivorous species such as Eptesicus
fuscus and Myotis lucifugus could result in increased insect populations, influencing
agricultural pest control [62]. Linking these ecological roles to ecosystem function
theory, the loss of functional diversity among bat species can compromise ecosystem
stability and resilience. For example, the spread of white-nose syndrome has led to
severe declines in several North American bat populations, with cascading effects on
insect populations and agricultural pest management [2].

The geographical spread of bat mortality events indicates that bat populations are
under pressure globally, though some regions are more heavily affected than others.
North America and Australia account for the highest mortality events, with North
America (n = 112) particularly standing out [44,63,64]. The disproportionate number
of mortality events in these regions may be due to factors such as higher bat population
densities, more extensive studies conducted in these areas, or the presence of higher
human infrastructure that increases risk [65].

The major causes of mortality described in the various papers were predation (n
= 59), anthropogenic causes (n = 56), and natural disasters (n = 53). Although causes
such as poisoning, gunshots, electrocution, or wind farms could also be associated
with anthropogenic factors, the authors decided to differentiate when humans were
directly responsible for the deaths, either intentionally or unintentionally.

Analysis over time reveals that some mortality factors have risen in frequency
and now represent the predominant causes of death (Figure 6). The shifting causes of
bat mortality over the decades reflect changing environmental, industrial, and
ecological dynamics. Before 1950, anthropogenic causes were prevalent, likely due to
habitat destruction, roost disturbance, and indiscriminate killing driven by
misconceptions about bats. The mid-20th century (1950-1999) saw a rise in poison-
related deaths, coinciding with the widespread use of pesticides and rodenticides,
which inadvertently affected non-target species like bats. Post-2000, predation
emerged as a dominant cause of mortality, potentially exacerbated by habitat
fragmentation that forces bats into more exposed areas, increasing vulnerability to
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predators. Additionally, the proliferation of wind farms and expanding electrical
infrastructure has further heightened risks of collision and electrocution, reflecting the
complex interplay between human development and bat habitats.

Predation (n = 59) is the most common cause of mortality, particularly within the
Vespertilionidae family, the largest bat group [66,67]. This may be due to their small
size, which makes them vulnerable to predators, or their roosting habits, which might
place them close to predators [68,69]. All predation events are associated with cats
[41,70]. Feral and domestic cats are widely recognized as one of the most significant
threats to wildlife, especially to small animals like birds, reptiles, and mammals
[41,71]. Research shows that cats kill billions of animals each year, with estimates
suggesting that they are responsible for the deaths of millions of bats globally [41].
Cats are skilled hunters who can easily prey on bats, especially when these animals
are roosting or emerging at dusk [42]. Additionally, young bats or injured bats are
particularly susceptible to predation, and cats may prey on them more frequently than
healthy adult bats. The impact of cat predation on bat populations is most pronounced
in areas where cats are abundant, particularly in urban and suburban environments
[72]. Cat predation represents a significant and often underestimated threat to bat
survival since it leads to bat population decline, disruption of roosting sites and
increased susceptibility to diseases such as white-nose syndrome [42,72]. Predation
pressures on bats could be exacerbated by environmental stressors, such as habitat loss,
which may lead to increased vulnerability to predators [73,74].

Anthropogenic factors have emerged as a significant driver of bat mortality,
accounting for a notable number of deaths across various bat species. The data
presented indicate that anthropogenic causes were responsible for 56 mortality events
in the studies reviewed [2]. These causes are diverse and include both accidental and
intentional human activities, which can have severe consequences for bat populations
[43]. One of the primary forms of accidental anthropogenic mortality in bats is
entanglement in netting and obstruction of caves. This form of mortality typically
occurs when bats become trapped in mist nets or other types of netting used for
research or commercial purposes. While mist nets are important tools for capturing
bats for study, if not handled carefully or if left in areas where bats are active, they can
inadvertently cause significant harm [75]. Bats that get caught in the nets often suffer
physical trauma, including broken wings, suffocation, or other injuries that can lead to
death [48,76]. Similarly, obstruction of natural roosting sites (such as caves) by human
activities can prevent bats from accessing their homes [77]. Caves are crucial for many
bat species that use them for hibernation and roosting, and disruptions to these sites,
whether through construction, mining, or tourism, can lead to the displacement of bat
colonies or direct injury from trapped individuals. For example, bat exclusion devices
or poorly planned cave management for tourism may inadvertently harm bats by
preventing them from safely roosting or leading to their entrapment [43]. These forms
of accidental mortality may seem incidental, but they can have large-scale implications
for bat populations, particularly if the disturbance affects roosting sites that are used
by large colonies. Over time, such disruptions can lead to population declines if bats
are unable to find suitable alternatives for roosting or if the injuries sustained from
entanglement or entrapment reduce reproductive success [77]. Beyond accidents,
intentional anthropogenic mortality represents a significant threat to bat populations,
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often due to vandalism or direct persecution [78]. Bats are sometimes perceived by
individuals or communities as threats to agriculture or as disease carriers, largely
because of associations with illnesses such as rabies or Ebola and misunderstandings
of their behavior and ecological roles. Consequently, bats are often deliberately killed,
displaced, or harassed [2,75].

Natural disasters were also a leading cause of bat mortality in both the USA and
Australia, with 20 recorded deaths each in these regions. The vulnerability of bat
populations to natural disasters—such as storms, hurricanes, floods, or wildfires—
raises concerns about how climate change could exacerbate these risks [79]. As
extreme weather events become more frequent and severe due to climate change, bat
populations may face increased mortality [8]. Natural disasters also disrupt critical
roosting sites and foraging areas, further compounding the challenges for affected bat
species [80]. Climate change is expected to increase the frequency of extreme weather
events, including more intense storms, flooding, and heat waves. As a result, bats in
some regions may be facing not only the effects of natural disasters but also the
cumulative stress of climate-related changes in temperature, food availability, and
habitat conditions [8,81].

Infectious diseases such as White Nose Syndrome (WNS), were included since
there is the possibility that humans could be responsible for their fast propagation by
contaminating several places of hibernation. It is also important to refer to the negative
impact of WNS. Although recorded as 1 event, it has been responsible for the mortality
of millions of bats [64,81]. This devastating disease affects hibernating bats, caused
by the fungus Pseudogymnoascus destructans. It primarily impacts bats in North
America and has caused significant declines in bat populations, especially among
species that hibernate in caves and mines. The fungus grows on the skin of bats,
particularly around the nose, ears, and wings, leading to tissue damage, dehydration,
and disturbed hibernation [54,82]. As a result, bats may wake prematurely from
hibernation, exhausting their fat reserves and often dying from starvation. WNS has
contributed to the decline of several bat species, including the already threatened Little
Brown Bat and the Northern Long-Eared Bat [83]. Beyond immediate mortality, the
broader ecological ramifications of WNS include disrupted insect control dynamics,
increased agricultural pest pressures, and altered nutrient cycling in cave ecosystems
[12].

The information in the post-mortem only confirmed what was expected, that the
major cause of mortality in bats is associated with trauma [48,49,52,84].

Conservation Considerations and Mitigation Strategies

Conserving bat populations requires a comprehensive approach that addresses the
various factors contributing to mortality [85]. Conservation strategies can be more
effectively prioritised by considering regional differences in bat mortality drivers. For
example, wind turbine collisions pose significant threats to migratory species like
Tadarida brasiliensis in the southwestern United States, while habitat loss due to
deforestation critically affects Pteropus poliocephalus populations in Australia.
Successful mitigation strategies include installing ultrasonic deterrents near wind
farms and establishing protected roosting sites in agricultural landscapes. Additionally,
economic incentives, such as integrating bat-friendly practices in urban planning and
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pest management, can promote conservation while providing cost-effective pest
control solutions for farmers [86].

One of the most pressing needs for bat conservation is the protection of critical
habitats and restoration [87]. Installing bat houses, restoring old structures, or
maintaining protected caves can help mitigate habitat loss [87]. This can include the
creation of wildlife corridors that connect fragmented habitats, ensuring that bat
populations can migrate and forage without encountering human-made obstacles [88].
Urban planning should incorporate green spaces and bat-friendly infrastructure to
provide safe roosting areas [89,90].

As wind energy continues to grow, so does the risk to bats from turbine collisions.
Incorporating bat-friendly practices into wind farm development is essential. These
practices could include adjusting the timing and operation of turbines during peak bat
activity periods or setting wind farms away from key bat habitats and migration routes
[52]. Additionally, monitoring bat populations around wind farms can help reduce the
risk of fatalities [91,92].

The use of harmful pesticides can poison bats, either directly or through the
contamination of their food sources [93]. Stricter regulation on pesticide use, as well
as the promotion of organic farming practices and bat-friendly pest control methods,
can reduce this threat. Educating farmers and landowners on the benefits of bats in
controlling insect populations can also help reduce reliance on harmful chemicals
[94,95].

Bushmeat hunting remains a significant threat in tropical regions [9].
Conservation efforts need to include education campaigns that highlight the ecological
role of bats and the threats posed by overhunting [9]. Additionally, implementing
hunting bans, creating alternative livelihoods, and promoting sustainable practices
could help reduce hunting pressures on bat populations [96].

Infectious diseases, particularly white-nose syndrome, have devastated bat
populations, especially in North America [57]. Disease surveillance and management
should be prioritized, and research into disease prevention and treatment for affected
species should be increased. Monitoring bat populations for signs of disease and
implementing biosecurity measures to limit disease spread are also important
components of bat conservation. Ongoing research and management efforts to mitigate
WNS include habitat modifications to reduce pathogen spread, the development of
biological treatments (e.g., antifungal agents), and increased monitoring of vulnerable
bat populations. These initiatives aim to stabilise populations and restore ecological
functions, though long-term recovery remains uncertain [81,82,97].

The legal protection of bats is essential for their conservation. Many bat species
are legally protected due to their importance in ecosystems and the growing awareness
of their vulnerability. Strengthening legal frameworks can help reduce human-induced
mortality caused by poaching, vandalism, and habitat destruction. Educating the public
about the importance of bats is crucial for conservation [98]. Many people view bats
with fear or suspicion, not realizing their crucial role in pest control and pollination
[99]. Public engagement can foster more positive attitudes toward bat conservation
and encourage practices that protect bat populations, such as installing bat houses,
reducing the use of pesticides, and preserving natural habitats [100].
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5. Conclusions

Bat mortality from predation, disease, human activities, and environmental
hazards threatens bat populations, ecosystem health, and agricultural productivity, as
bats provide vital pest control. Effective conservation requires integrated strategies
combining habitat protection, mitigation of anthropogenic impacts, disease
management, and public awareness. Initiatives like habitat restoration, education
campaigns, and coordinated monitoring (e.g., NABat) demonstrate the value of
combining research, policy, and engagement to sustain both bats and the benefits they
provide to ecosystems and agriculture.

Author Contributions: Conceptualization, A.G.; methodology, A.G. and LP.;
software, A.G. and L.P.; validation A.G. and L.P.; formal analysis, A.G., and LP.;
investigation, A.G. and LP.; resources, A.G. and L.P.; data curation, A.G. and L.P.;
writing—original draft preparation, A.G. and LI.P.; writing—review and editing, A.G.
and LP.; visualization, A.G., and IL.P.; supervision, A.G. and L.P.; project
administration, A.G.; funding acquisition, I.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the projects UIDB/CVT/00772/2020 and
LA/P/0059/2020, funded by the Portuguese Foundation for Science and Technology
(FCT) (Project UIDB/CVT/0772/2020).

Acknowledgments: This work was supported by the projects UIDB/CVT/00772/2020
and LA/P/0059/2020, funded by the Portuguese Foundation for Science and
Technology (FCT) (Project UIDB/CVT/0772/2020).

Conlflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table Al. Reports of multiple bat deaths regarding species, Family, date, location, number of deaths (n), description

and reference.

Specie Date Location Type Number  Description Ref.
Death Deaths
™)
Pteropus alecto, Pteropodidae 1980 Australia Poison 11 High levels of lead in the tissue [23]
Pteropus poliocephalus,
Pteropus scapulatus
Rhinolophus ferrumequinum Rhinolophidae NA UK Poison 15 Lindane [101]
Rhinolophus ferrumequinum Rhinolophidae 1952 UK Poison 100 Chemical treatment of timbers for [102]
wood-boring insect control
Rhinolophus ferrumequinum Rhinolophidae 1953 UK Poison >100 Lindane [24,103]
Plecotus auritus Rhinolophidae 1962-1972  Netherlands  Poison 300 Pesticides [104]
Eptesicus serotinus Vespertilionidae 1964 Netherlands ~ Poison 14 Lindane [104]
Eptesicus serotinus, Vespertilionida, — 1963-1968  Netherlands  Poison 78 Chemical treatment of timbers for [25]
Plecotus auritus, Pteropodidae wood-boring insects and decay
Mpyotis dasycneme,
Pipistrellus sp.
Mpyotis dasycneme Vespertilionidae  1973—1977  Netherlands  Poison 138 Lindane and DDT [105]
Mpyotis dasycneme Vespertilionidae  1974-1981  Netherlands  Poison 40-100 Treatment timber with DDT, [106]
lindane, PCP
Rhinolophus ferrumequinum, Rhinolophidae, 1982-1987 UK Poison 23 Treatment of timbers in roosts with ~ [107]

Pipistrellus pipistrellus,
Plecotus auritus, Myotis

brandtii, Myotis daubentonii,

Myotis mystacinus, Myotis
nattereri

Vespertilionidae

17

dieldrin or lindane
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Rhinolophus ferrumequinum
Rhinolophus ferrumequinum

Mystacina tuberculata

Myotis grisescens
Myotis sodalis

Myotis grisescens
Myotis grisescens
Myotis grisescens
Myotis grisescens

Myotis grisescens
Myotis grisescens

Mpyotis lucifugus
Pteropus poliocephalus
Pteropus poliocephalus
Pteropus scapulatus
Pteropus alecto,
Pteropus poliocephalus

Pteropus poliocephalus

Pteropus poliocephalus

Pteropus poliocephalus
Pteropus alecto,

Pteropus poliocephalus
Pteropus poliocephalus

Pteropus alecto,

Pteropus poliocephalus
Pteropus poliocephalus
Pteropus poliocephalus
Pteropus poliocephalus
Pteropus alecto,

Pteropus poliocephalus
Pteropus poliocephalus
Pteropus poliocephalus
Miniopterus schreibersii
Pteropus spp.

Pteropus spp

Pteropus poliocephalus,
Pteropus alecto

Pteropus spp.

Pteropus niger
Brachyphylla cavernarum
Pteropus seychellensis
Pteropus rodricensis
Mormopterus acetabulosus
Pteropus rayneri, Pteropus

tonganus
Stenoderma rufum

Rhinolophidae
Rhinolophidae

Mpystacinidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae

Pteropodidae

Pteropodidae
Pteropodidae

Pteropodidae

Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Miniopteridae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Phyllostomidae
Pteropodidae
Pteropodidae
Molossidae
Pteropodidae

Phyllostomidae

1986
1999-2001

2009

1976
1976

1977
1978
1980
1980-1981

1982
1986

2009

1905

1913

1926-1927

1994

1994

1998

1990

2000

2001

2002

2003

2004

2004

2005

2006

2006-2007

2006

2007

2012

2014

2015

1960

1977

1977

1979

1980

1986

1989

UK
France

New
Zealand
USA
USA
USA
USA
USA
USA

USA
USA

USA

Australia
Australia
Australia
Australia
Australia

Australia

Australia
Australia

Australia

Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Mauritius
Virgin
Islands
Comoros
Islands
Rodriquez
Island
Mauritius
Solomon

isles
Puerto Rico

18

Poison
Poison

Poison

Poison
Poison

Poison
Poison
Poison
Poison
Poison
Poison

Poison
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters

Natural
disasters
Natural
disasters
Natural
disasters

Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters

1500
169

115

30
NA

NA

NA

1000

6000

136

29

500

>2000

3679

5000

8000

5000

8900

4843

207

300

NA

NA

100

7000

NA

NA

NA

81

3000

NA

NA

Dieldrin as wood preservative
Lead and pentachlorophenol
poisoning

Secondary poisoning by
rodenticide diphacinone
Dieldrin

Suspected lethal mix of dieldrin
and heptachlor

Dieldrin

Dieldrin

Dieldrin

Dieldrin

Dieldrin

DDD and endrin or metabolite
concentrations suggestive of
organochlorine

Carbamate

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

Drought-induced migratory stress

and starvation.

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

High ambient temperatures-

hyperthermia, Drought, native food

shortage

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

High ambient temperatures-

hyperthermia, drought, native food

shortage

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

Cold temperatures

Cold temperatures

Storm

High ambient temperatures-
hyperthermia

High ambient temperatures-
hyperthermia

Cyclone carol

Severe drought

Vulcano

Typhoon celine ii

Cyclone Hyacinthe, drowning

Cyclone namu

Hurricane hugo

[26]
[108]

[28]

[59]
[109]

[110,111]
[112]

[35,116]
[116]
[35]
[35]

[117]

[22]
[35]

[118]

[35]
[35]
[35]
[35]
[35]
[35]
[35]
[37]
[119]
[119]
[120]
[21]
[122]
[123]
[122]
[122]
[122]
[124]

[125]
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Pteropus tonganus, Pteropus

samoensis

Mormoops blainevillei,
Monophyllus redmani,
Erophylla

sezekorni

Pteropus tonganus

Tadarida brasiliensis
Mpyotis lucifugus
Myotis sodalis
Eptesicus fuscus

Mpyotis lucifugus, Myotis
sodalis

Eptesicus fuscus, Myotis
lucifugus, Myotis sodalis,
Perimyotis subflavus
Rousettus leschnaultii,
Hipposideros armiger
Rousettus leschnaultii,
Eonycteris spelaea,
Hipposideros armiger
Pteropus poliocephalus
Pteropus poliocephalus
Miniopterus schreibersii

Pteropus sp.

Rhinolophus megaphyllus,
Taphozous georgianus
Pteropus poliocephalus

Pteropus poliocephalus
Pteropus poliocephalus
Pteropus conspicillatus

Pteropus poliocephalus
Rhinolophus hipposideros,
Myotis myotis,

Nyctalus noctula,
Miniopterus schreibersii
Rousettus aegyptiacus

Rousettus aegyptiacus

Pipistrellus pipistrellus

Rhinolophus ferrumequinum

Myotis sp.

Pipistrellus pipistrellus
Miniopterus schreibersii
Miniopterus schreibersii
Mpyotis blythii

Pteropus tonganus
Pteropus mariannus

Brachyphylla cavernarum

Brachyphylla cavernarum
Macrotus waterhousii
Aproteles bulmerae

Pteropus seychellensis

Pteropodidae
Mormoopidae,
Phyllostomidae
Pteropodidae
Molossidae
Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae
Pteropodidae,
Hipposideridae
Pteropodidae,
Hipposideridae
Pteropodidae
Pteropodidae
Miniopteridae
Pteropodidae
Rhinolophidae,
Emballonuridae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Rhinolophidae,
Vespertilionida,
Miniopteridae
Pteropodidae
Pteropodidae

Vespertilionidae
Rhinolophidae

Vespertilionidae
Vespertilionidae
Miniopteridae
Miniopteridae
Vespertilionidae
Pteropodidae
Pteropodidae

Phyllostomidae

Phyllostomidae
Phyllostomidae
Pteropodidae

Pteropodidae

1990, 1991

1998

2001
1930
1936
1937
1940
1950

1964

2013
2014
1890
1950
1965
1984
1988
1988-1993
1990
1990
2000
2013

Unknown

1933
1955

1971
1978

1981
1985
1986
1986
1987
1923
1950
1955

1956
1965
1970

1977

American
Samoa
Puerto Rico

Tonga
USA
USA
USA
USA
USA

USA

India

India

Australia
Australia
Australia

Australia
Australia
Australia

Australia
Australia
Australia

Australia

Yugoslavia

Cyprus
Cyprus

UK
UK

UK
Norway
Gibraltar

France
Malta

Niue Island
Western
Caroline
Islands

u.sS.
Virgin
Islands
U.S. Virgin
Islands
Cuba

New

Guinea
Seychelles

19

Natural
disasters
Natural
disasters

Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters

Anthropoge
nic causes
Bushmeat

Shotgun
Shotgun
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Shotgun
Shotgun
Electrocuti
on
Anthropoge
nic causes
Anthropoge
nic causes

Anthropoge
nic causes
Anthropoge
nic causes
Poison
Anthropoge
nic causes
Shotgun
Poison
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Bushmeat
Bushmeat

Anthropoge
nic causes

Anthropoge
nic causes
Anthropoge
nic causes
Shotgun

Bushmeat

NA

NA

40-50
40
>100
300,000
>100
5000

NA

12,000
7000
200
2000
200
NA
NA
46

)
70,000
1510
NA

NA

600
100
NA
NA

2500

2000
323
NA

5

Hurricane Ofa and Hurricane Val
caused bat starvation
Hurricane georges

Cyclone waka
Frozen

Cold weather
Flood

Winter storm
Flood drowned

Flood

Smoke in cave

Harvest has been ongoing for >150
years according to oral history

Found in caves had broken wings

Blasting for mine development

Entanglement in netting at fruit
orchards

Stress of roost destruction

Children with air guns

Fruit depredation control
Fruit depredation control

Insecticide fumigation
Fireworks

Shot with pellets

Gassed

Smoked out and killed by youths
Vandals

Killed by fire lit

Night’s catch

Seasonal harvest

Motor vehicle exhaust

Motor vehicle exhaust

Restaurant

[126-128]

[129]

[130,131]
[132]
[133]
[134]
[135]
[136]

[137]

[138]
[139]
[140]
[140]
[141]
[142]
[138]
[143]
[140]
[144]
[145]
[138]

[101]

(4]
(4]

[101]
[101]

[101]
[101]
[101]
[101]
[101]
[146]
[147]
[148]

[148]
[149]
[150]

[151]



Agriculture and Biology 2026, 1(2), 1-36.

Pteropus mariannus

Pteropus alecto
Pteropus

Dobsonia moluccensis
Pteropus giganteus

Pteropus conspicillatus

Pteropus sp.
Pteropus mariannus

Miniopterus manavi,

Mpyotis goudoti

Pteropus vampyrus
Hipposideros commersoni
Rousettus madagascariensis
Hipposideros commersoni,
Miniopterus gleni, Triaenops
rufus

Mops midas

Rousettus madagascariensis
Pteropus rufus

Rousettus madagascariensis
Pteropus dasymallus
Pteropus rufus

Eidolon dupreanus
Pteropus vampyrus
Tadarida brasiliensis
Corynorhinus townsendii
Eptesicus fuscus

Mpyotis lucifugus

Desmodus rotundus

Myotis yumanensis
Mpyotis grisescens

Mpyotis lucifugus,
Mpyotis sodalis
Mpyotis sodalis
Myotis sodalis

Mpyotis lucifugus
Eptesicus fuscus

Mpyotis lucifugus
Myotis grisescens

Mpyotis lucifugus
Antrozous pallidus

Myotis sodalis
Mpyotis lucifugus
Mpyotis lucifugus
Mpyotis sodalis
Mpyotis grisescens

Myotis grisescens

Eptesicus fuscus

Pteropodidae

Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae

Pteropodidae
Pteropodidae

Miniopteridae

Pteropodidae
Hipposideridae

Pteropodidae
Hipposideridae,
Miniopteridae,
Rhinonycteridae
Molossidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae

Pteropodidae
Molossidae

Vespertilionidae
Vespertilionidae
Vespertilionidae
Phyllostomidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae

Vespertilionidae

Vespertilionidae

1978-1981

1982
1984
1984-1987
1986-1987
1995

2001
2002-2003

2003

2003
2004

2004
2005
2005
2006
2006
2006
2008
2008

2011
1908

1914
1940-1941
1944
1940s—
1950s
1950
1950

1960

1960

1961

1962-1963
1962-1963

1963

1963-1971

1964
1964

1965
1968
1969
1970
1971
1970-1976

1972

Western
Caroline
Islands
Indonesia
Vanuatu
Papua New
Guinea
Maldives

Solomon
Islands
Tonga
Mariana
Islands
Madagascar

Borneo
Madagascar

Madagascar
Madagascar
Madagascar
Madagascar
Madagascar
Madagascar
Japan

Madagascar

Philippines
USA

USA

USA
Canada
Mexico

Mexico
USA

USA
USA
USA

Canada
USA

USA
USA

USA
USA

USA
USA
USA
USA
USA
USA

USA

20

Bushmeat

Bushmeat
Bushmeat
Bushmeat

Anthropoge
nic causes
Bushmeat

Bushmeat
Bushmeat

Bushmeat

Bushmeat
Anthropoge
nic causes
Anthropoge
nic causes
Bushmeat

Bushmeat
Anthropoge
nic causes
Bushmeat
Bushmeat
Anthropoge
nic causes
Bushmeat

Bushmeat
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Poison
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropog
enic causes
Infectious
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Poison
Anthropoge
nic causes
Anthropoge
nic causes
Poison
Poison
Anthropoge
nic causes
Anthropoge
nic causes
Shotgun

Poison

7238

100
100
NA
295
1000

50
638

100

4500
25

90
2700
NA
300
100
480
100
190

19
NA

NA
NA
NA
10,000

>100
NA

100
NA
10,000

146
NA

1500
NA

NA
200

140
650
>100
NA
>100
NA

NA

Guam as delicacy

Hunters

Ceremonies

Food

Fruit depredation control

Food

Food following typhoon
Food following typhoon

Food

Hunters
Roost

Roost

Hunter

Cooked
Fruiting season
Canopy nets
Hunts

Nets set

Hunters

One hunter
Destroyed

Vandals set fires

Boys holding burning newspapers
Workmen had killed

Flame throwers

DDTt
Torches

Flames of torches
Closed hibernaculum
Vandals

Rabies
Pellet shot and burning

Exterminated
Human attacks

DDT
Burned

Intentionally blinded by cauterizing
eyes

DDT

DDT

Vandals

Burning of construction debris
Teenage boys who shot large

numbers of bats
Ddt

[147]

[152]
[153]
[150]
[154]
[155]

[130]
[156]

[157]

[158]
[159]

[159]
[157]
[160]
[161]
[162]
[162]
[163]
[164]

[165]
[166]

[167]
[168]
[169]
[170]

[111]
[171]

[172]
[173]
[173]

[169]
[174]

[173]
[171]

[173]
[175]

[176]
[172]
[172]
[173]
[177]
[171]

[111]
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Antrozous pallidus

Myotis lucifugus,
Eptesicus fuscus
Eptesicus fuscus
Desmodus rotundus
Mpyotis sodalis
Eptesicus fuscus
Tadarida
brasiliensis
Eptesicus fuscus,
Antrozous pallidus,
Tadarida brasiliensis
Mpyotis sodalis

Lasiurus borealis
Myotis lucifugus,
Eptesicus fuscus
Tadarida brasiliensis
Mpyotis yumanensis
Myotis austroriparius
Mpyotis lucifugus
Mpyotis lucifugus
Tadarida brasiliensis
Eptesicus fuscus
Tadarida brasiliensis
Desmodus rotundus
Molossus molossus, Molossus
rufus

Desmodus rotundus
Desmodus rotundus
Desmodus rotundus
Desmodus rotundus
Desmodus rotundus

Desmodus rotundus

Desmodus rotundus
Desmodus rotundus

Eptesicus, Myotis, Perimyotis,
Miniopterus, Barbastella,
Plecotus and Rhinolophus
Rhinonicteris aurantia
Tadarida brasiliensis

Myotis grisescens
Tadarida brasiliensis
Myotis sodalis
Mpyotis sodalis
Mpyotis sodalis
Myotis
austroriparius
Myotis
austroriparius
Myotis

austroriparius
Myotis sodalis

Vespertilionidae
Vespertilionidae
Vespertilionidae
Phyllostomidae

Vespertilionidae
Vespertilionidae

Vespertilionidae

Vespertilionidae

Vespertilionidae
Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae
Vespertilionidae
Phyllostomidae
Molossidae
Phyllostomidae
Phyllostomidae
Phyllostomidae
Phyllostomidae
Phyllostomidae

Phyllostomidae

Phyllostomidae
Phyllostomidae

Vespertilionidae
, Miniopteridae,
Rhinolophidae
Rhinonycteridae
Molossidae
Vespertilionidae
Molossidae
Vespertilionidae

Vespertilionidae

Vespertilionidae

Vespertilionidae
Vespertilionidae
Vespertilionidae

Vespertilionidae

1972
1973-1975
1978
1980
1987
1990
1991

1994

2007

2008

2009

2010
2012

2013
2013
2013
2014
2014
2014
1940
1958-1959
1959
1960
1950-1960
1961
1962
1950-1990

1960
1964-1966

20062024

2020-2023

1967

1970

1977

1977

1950

1986

1989

1990

1994

1996

USA
USA
Canada
Mexico
USA
USA
USA

USA

USA
USA
USA

USA
USA

USA
USA
USA
USA
USA
USA
Trinidad
Trinidad
Trinidad
Trinidad
Trinidad
Trinidad
Trinidad
Brazil

Colombia
Venezuela

USA,
Europe

Australia
USA

USA
USA
USA
USA
USA
USA
USA
USA

USA

21

Anthropoge
nic causes
Poison

Poison
Poison
Shotgun
Shotgun
Shotgun

Shotgun

Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Shotgun
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Poison

Poison
Infectious
Infectious
Anthropoge
nic causes
Anthropoge
nic causes
Anthropoge
nic causes
Infectious
Poison

Infectious

Predation
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters

18

>100

NA

19
>575

26

105
10
30

73

41

12

24
15

25

1931
12

30
20,000
171

29
>100
5000
2,700,00
0

5.7

million

183-200
NA

10,000
NA
200
NA
NA
6500
5000
85,000

100

Killed by vandals
DDT and chlordane
DDT

Anticoagulants

Pellet holes or crushed
Shot and beaten

Firearm shells

Shotgun

Beaten
Trauma
Trauma

Gunshot
Trauma

Trauma

Trauma

Trauma

Trauma

Trauma

Trauma

Flamethrowers, poison gas,
dynamite

DDT, BHC, chlordane, dieldrin
Strychnine

Rabies control

Control efforts

Nets

Nets

Poisonous gas and dynamited

Aerosolized Newcastle’s virus
Fumigation

Pseudogymnoascus destructans
Cats

Drought-induced migratory stress
and starvation.

Flood

Rainstorm

Frozen

Winter storm

Winter storm[137]

Flood

Flood

Flood

Flood

[109]
[25,59]
[178]
[170,179]
[180]
[181]
[138]

[181]

[138]
[30]
[30]

[30]
[30]

[30]
[30]
[30]
[30]
[30]
[30]
[170]
[182]
(33]
[33]
[183]
[33]
[33]
[179]

[170]
[184]

[97,185]
[15]
[186]
[187]
[186]
[188]
[173]
[173]
[189]
[189]
[190]

[191]
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Mpyotis sp.
Mpyotis lucifugus

Eptesicus fuscus
Myotis sp.

Tadarida

brasiliensis

Pteropus poliocephalus

Pteropus conspicillatus

Pteropus conspicillatus
Rhinolophus ferrumequinum,
Rhinolophus hipposideros,
Plecotus auritus

Mpyotis daubentonii
Plecotus auritus,
Pipistrellus spp.,

Hypsugo savii

Pipistrellus kuhlii
Brachyphylla cavernarum,
Erophylla bombifrons,
Mormoops blainvillei,
Monophyllus redmani,
Pteronotus quadridens
Mpystacina tuberculata

Myotis sp.

Mpyotis lucifugus
Myotis sp.,
Lasiurus cinereus
Mpyotis lucifugus
Mpyotis lucifugus

Mpyotis lucifugus
Eptesicus fuscus
Mpyotis septentrionalis,
Mpyotis lucifugus
Eptesicus fuscus
Mpyotis ciliolabrum

Corynorhinus townsendii
Tadarida brasiliensis
Hypsugo savii, Nyctalus
noctula, Pipistrellus kuhlii,
Pipistrellus pipistrellus,
Eptesicus serotinus
Pipistrellus spp, Nyctalus
leisleri

Artibeus lituratus, Molossus
molossus, Molossus rufus,
Nyctinomops laticaudatus,
Promops nasutus, Promops
nasutus, Lasiurus blossevillii,
Lasiurus cinereus, Lasiurus
ega

Tadarida brasiliensis, Myotis
yumanensis, Myotis
yumanensis, Myotis
yumanensis, Tadarida
brasiliensis, Myotis spp,
Eptesicus fuscus

Lasiurus ega, Myotis ruber,
Mpyotis ruber, Artibeus
lituratus, Artibeus fimbriatus,
Sturnira lilium

Myotis myotis

Eptesicus fuscus, Myotis
lucifugus
Myotis davidii

Vespertilionidae
Vespertilionidae
Vespertilionidae

Vespertilionidae
Pteropodidae

Pteropodidae
Pteropodidae
Vespertilionidae

, Rhinolophidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae
Phyllostomidae,
Mormoopidae,
Pteropodidae
Mystacinidae

Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae

Vespertilionidae
Vespertilionidae

Vespertilionidae
Phyllostomidae,

Molossidae,
Vespertilionidae

Vespertilionidae

Phyllostomidae,
Vespertilionidae
Vespertilionidae
Vespertilionidae

Vespertilionidae

1997
2004
2005
2011
1988-1993
1991
1998-2010
1988
1988
1997
2009

2009-2011
2006-2007

2010

1892

1969
1985

2008
2008

2010
2010
2010

2011
2011

2012

2014
1998-2000

2007

2004-2010

20112012

2014-2015

2020

2008-2017

2014

USA
USA
USA
USA
Australia
Australia
Australia
UK

UK

UK

Italy

Italy
Puerto Rico

New
Zealand
USA

USA
USA

USA
USA

USA
USA
USA

USA
USA

USA

USA
Spain

Portugal

Brazil

USA

Brazil

Czech
Republic
USA

Mongoli
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Natural
disasters
Natural
disasters
Natural
disasters
Natural
disasters
Natural
causes
Infectious

Infectious
Predation

Predation
Predation

Predation
Predation
Predation

Predation

Natural
causes
Predation
Poison

Predation
Natural
causes
Predation
Predation
Predation

Predation
Natural
causes
Predation
Predation
Wind farms

Wind farms

Wind farms

Infectious

Roadkill

Natural
causes
Wind farms

Anthropoge
nic causes

10

51

25

600

61

3000

680

22

70

30

12

161

102

NA
1000

10
40

30

12

13
50

11

123
23

48

336

28

11

NA

18

1208

Flood

High temperatures

Flood

Winter storm

Non-volant young

Tick paralysis neurotoxicity
(fostered by ecosystem change)

Tick paralysis
Cat

Cat
Cat
Cat

Cat
Cat

Cat

Burdock plants (Arctium sp.)

Cat

Blue-green algal bloom (bluegreen

algae neurotoxin identified)

Emaciation, starvation suspect

Starvation

Starvation
Starvation

Rabies

Obstruction of the entrance,
human activities may have
exacerbated a blockage of the cave

[191]
[30]
[191]
[30]
[143]
[192]
[44]
[101]
[101]
[193]
[42]

[42]
[194]

[73]
[195]

[196]
[31]

[30]
[30]

[30]
[30]
[30]

[30]
[30]

[30]

[30]
[197]

[198]

[199]

[45]

[200]

[201]
[202]

[43]
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Molossops temminckii,
Glossophaga soricina, Artibeus
spp., Platyrrhinus spp.,
Sturnira lilium

Eptesicus fuscus, Myotis
lucifugus, Pipistrellus
subflavus, Myotis
septentrionalis, Lasiurus
cinereus, Lasiurus borealis,
Lasionycteris noctivagans
Mpyotis austroriparius

Rhinolophus hipposideros,
Mpyotis brandtii, M. alcathoe,
M. emarginatus, M. nattereri,
M. bechsteinii, M. myotis, M.
daubentonii, M.
emarginatus/alcathoe, M.
emarginatus/alcathoe,
Eptesicus serotinus, Nyctalus
noctula, N. leisleri, Pipistrelus
pipistrellus, P. pygmaeus, P.
nathusii, P.
pipistrellus/pygmaeus,
Pipistrellus sp., Hypsugo savii,
Plecotus auritus, P. austriacus,
Barbastella barbastellus, P.
auritus/austriacus
Lasionycteris noctivagans,
Lasiurus cinereus, Myotis
lucifugus, Lasiurus borealis,
Eptesicus fuscus
Lasionycteris noctivagans,
Lasiurus cinereus, Myotis
lucifugus, Lasiurus borealis,
Eptesicus fuscus

Lasiurus cinereus, Lasiurus
borealis, Eptisecus fuscus,
Lasionycteris noctivagans,
Mpyotis lucifugus

Mpyotis lucifugu

Rhinolophus hipposideros,
Myotis myotis, Myotis nattereri,
Mpyotis mystacinus, Myotis
brandltii, Myotis dasycneme,
Mpyotis daubentoniia,
Eptesicus serotinus,
Pipistrellus nathusii, Nyctalus
noctula, Nyctalus leisleri,
Plecotus auritus, Plecotus
austriacus, Barbastella
barbastellus

Epomophorus wahlbergi

Eptesicus serotinus

Eptesicus fuscus, Lasionycteris
noctivagans, Lasiurus borealis,
Mpyotis velifer, Perimyotis
subflavus, Tadarida
brasiliensis

Chaerephon plicatus,
Taphozous theobaldi

M. daubentonii , M. nattereri ,
P. auritus , M. myotis
Pipistrellus spp., Eptesicus
spp., Nyctalus spp., Myotis spp,
Miniopterus schreibersii,
Tadarida teniotis, Hypsugo
savii, Rhinolophus spp.,
Barbastella barbastellus,
Plecotus spp

Phyllostomidae,
Molossidae

Vespertilionidae

Vespertilionidae

Vespertilionidae

Vespertilionidae

Vespertilionidae

Vespertilionidae

Vespertilionidae
Vespertilionida,
Rhinolophidae

Pteropodidae

Vespertilionidae
Vespertilionidae

Molossidae,
Emballonuridae
Vespertilionidae

Vespertilionida,
Miniopteridae,
Rhinolophidae

2010-2015

2008-2009

1971-1972

2007

2008-2010

2009

2001-2002

1977-1974
1994-2000

2021

2009
2004-2005

2006

1995-2000

2005-2009

Brazil

USA

USA

Austria

USA

Minnesota

USA
Poland

South
Africa
France
USA

Cambodia
Poland

Spain
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roadkill

Wind farms

Natural
causes
roadkill

Wind farms

Wind farms

Wind farms

Poison
Roadkill

Natural
disasters
Infectious
Wind farms

Natural
disasters
Natural
causes
Wind farms

NA

332

NA

NA

NA

41

151

151

NA

200
12

176

2858

entrance and are the primary cause

of the mortality of bats in the cave.

DDT, chlordan

High temperatures

Eblv-1

Temple, whose roof had collapsed
bad weather

During the research thirty four
dead bats were found.

[203]

[204],

[205]

[206]

[207]

[207]

[208]

[209]
[210]

[211]

[212]
[213]

[214]
[215]

[216]
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Lasiurus cinereus, Lasiurus
borealis, Lasionycteris
noctivagans

Madeira pipistrelle
Mpystacina tuberculata

Pteropus melanotus

Artibeus lituratus ,
Glossophaga soricina ,
Carollia perspicillata,
Platyrrhinus recifinus ,
Sturnira lilium , Platyrrhinus
lineatus , Phyllostomus
hastatus , Nyctinomops
laticaudatus , Artibeus

fimbriatus and Anoura caudifer

Nyctalus leisleri, Pipistrellus
pipistrellus/ P. pygmaeus, P.
nathusii, Hypsugo savii and N.
noctula

Eidolon helvum

Eidolon helvum

Neoromicia nana

Eidolon helvum

Eidolon helvum
Hypsignathus monstrosus,
Epomops franqueti

Rousettus aegyptiacus

Myotis emarginatus,
Rhinolophus ferrumequinum

Cheiromeles torquatus
Rousettus leschenaulltii,
Chaerephon plicatus,
Rousettus leschenaultii,
Chaerephon plicatus,
Pteropus vampyrus, P.
hypomelanus

Pteropus vampyrus

Chaerephon plicatus
Scotophilus kuhlii
Chaerephon plicatus
Eonycteris spelaea

Pteropus giganteus
Pteropus giganteus
Pteropus giganteus

Pipistrellus pygmaeus,
Pipistrellus pipistrellus
Nyctalus noctula
Desmodus rotundus

Pipistrellus kuhlii, Hypsugo
savii, Tadarida teniotis,
Pipistrellus

Brachyphylla cavernarum,
Monophyllus redmani
Miniopterus schreibersii
Austronomus australis

Vespertilionidae
Vespertilionidae
Mystacinidae
Pteropodidae

Phyllostomidae,
Molossidae

Vespertilionidae

Pteropodidae

Pteropodidae

Vespertilionidae

Pteropodidae
Pteropodidae
Pteropodidae

Pteropodidae

Vespertilionida,
Rhinolophidae

Molossidae
Pteropodidae,
Molossidae
Pteropodidae,
Molossidae
Pteropodidae

Pteropodidae
Molossidae
Vespertilionidae
Molossidae
Pteropodidae
Pteropodidae
Pteropodidae
Pteropodidae

Vespertilioninae

Vespertilioninae
Phyllostomidae

Vespertilioninae
, Miniopteridae,
Rhinolophidae
Phyllostomidae

Miniopteridae
Molossidae

19762014
2014
2012
2012

2008-2019

2009-2010

1909

1914

1914

1972
1972-1973
2007
2008

Unknown

1950
1960

1960
1983-1984
1980
1990
1990
1999
2011
2018
2012-2013
2017-2018

20162018

2014-2015
1987, 1991

2009-2011

2010

2014-2017
2015-2017

USA

Portugal
New
Zealand
Christmas
island
Brazil

Greece

Democratic
Republic of
the Congo
Democratic
Republic of
the Congo
Democratic
Republic of
the Congo
Nigeria
Nigeria
Democratic
Republic of
Congo
Uganda

Betan
Aharon
Nature
Reserve,
Israel
Malaysia
Malaysia

Thailand
Malaysia
Malaysia
Lao

Lao

Lao
Thailand
Sri Lanka
Andaman
Islands
India

UK
Ukraine
Argentina,
Brazil
Italy

Puerto Rico

Italy
Australia
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Wind farms

predation
predation

predation

roadkill

Wind farms

Anthropoge
nic causes

Anthropoge
nic causes

Anthropoge
nic causes

Bushmeat
Bushmeat
Shotgun

Anthropoge
nic causes
Poison

Bushmeat
Bushmeat

Bushmeat
Bushmeat

Bushmeat

Bushmeat
Shotgun
Bushmeat
Anthropoge
nic causes
Electocussi
on
Electocussi
on
Electocussi
on
Predation

Predation
Predation

Predation

predation

predation
predation

NA

161

923

81

NA

NA

NA

10
12,000
NA
NA

NA

NA
NA

NA
NA
NA
NA
40
NA
>1000
300
15-30
30

40

157

NA
NA

Catt attack
Catt attack

Catt attack

Killed by local people

Dozens of them were killed every
day by natives with arrows and
nooses

Mutilated

Killed during hunting for food
Control and for market
Hunters shoot them on a daily basis

People had contracted Marburg
haemorrhagic fever
Fumigation aimed at fruit bats
(Rousettus aegyptiacus) as crop
pests

Food

Food

Food

Food

It is not uncommon for a group of
hunters to bag several hundred in a
single outing”. (1 event)

Sold at market

Slingshots

Smoked and sold

Nets set for orchard protection
electrical structures

electrical structures

electrical structures

cat

cat
cat

cat

cat

cat
cat

[217]
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[145,218]
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[221]

[221]

[221]

[222]
[222]
[223]
[224]

[225]

[194]

[235]
[236]
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Tadarida brasiliensis Molossidae 1999 Argentina predation NA cat [237]
Mystacina tuberculata Mpystacinidae 1961 New predation NA cat [238]
Zeland
Chilonatalus macer, Natalus Natalidae 2017 Cuba predation NA cat [239]
primus
Artibeus lituratus Phyllostomidae Brasil predation NA cat [240]
Desmodus rotundus Phyllostomidae 1971-2021  Brasil Poison NA Warfarin, chlorophacinone, [241]
diphacinone and diphenadione
Mpyotis lucifugus Vespertilionidae 2005 Canada Poison NA Rodent Trap [242]
Phyllonycteris poeyi Phyllostomidae 2010 Cuba predation NA cat [243]
Pteropus ornatus, Pteropus Pteropodidae 2011-2016 ~ New predation NA cat [72]
tonganus, Pteropus vetulus Caledonian
Rousettus aegyptiacus Pteropodidae 2007 Israel predation NA cat [244]
Syconycteris australis Pteropodidae 2001 Australia predation NA cat [174]
Mpyotis vivesi Vespertilionidae 1998 Mexico predation NA cat [245]
Nyctophilus geoffroyi Vespertilionidae 2007 Australia predation NA cat [246]
Nyctophilus geoffroyi Vespertilionidae 1984 Australia predation NA cat [247]
Nyctophilus geoffroyi Vespertilionidae 2018 Australia predation NA cat [247]
Chalinolobus gouldii Vespertilionidae  1996-1998  Australia predation NA cat [248]
Pteropus giganteus Pteropodidae 2010 India Natural NA Hot weather [249]
disasters
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